TO STATE OF THE PARTY OF THE PA	AMAR LUI	Roll No. Sig. of Candidate.			
********	***********	CHEMISTR SECTION – A	(Marks 17)		
Time NOTE	E:- Sec	red: 25 Minutes (Revised Syllak etion—A is compulsory. All parts of this sect ould be completed in the first 25 minute eting/overwriting is not allowed. Do not use	ion are to be answes and handed o	Version Nuvered on the	question paper itself.
Q. 1	Circle	e the correct option i.e. A / B / C / D. Each par	rt carries one mark		
	(i)	Which one of the following metal cannot displace. A. Cu B. Na			Са
	(ii)	The number of covalent bonds present in 8 g	•		
	(iii)	A. 1.204×10^{24} B. 3.01×10^{23} Paschen series of spectral lines is produced of	C. 6.02×10 due to transition of e		6.02×10 ²⁴ higher orbit to the:
		A. 4th orbit B. 1st orbit	C. 2nd orbi	t D.	3rd orbit
	(iv)	Which set of quantum numbers is NOT valid to A. $n=3$, $l=2$, $m=-2$ C. $n=2$, $l=0$, $m=0$	B. $n=1$, l	=1, $m=0t=1$, $m=-1$	
	(v)	The central atom is sp^2 hybridized in: A. CH_4 B. $BeCl_2$	C. BF ₃	D.	H_2O
	(vi)	Which one of the following has greater bond A . $N \equiv N$ B. $C \equiv O$	energy? C. $C = N$	D.	$C \equiv C$
	(vii)	Which one of the following gases possesses A. CH_4 B. CO_2	lowest density? C. N,	D.	NH ₃
	(Viii)	If both the pressure and temperature of a gas A Remain same C. Increase four times	are doubled, the vo B. Become D. Become	double	,
	(ix)	The boiling points of NH_3 , $\mathit{H}_2\mathit{O}$ and HF de	crease in the order:		
		A $HF > NH_3 > H_2O$ C. $H_2O > HF > NH_3$		$NH_3 > HF$ $H_2O > NH_3$	
	(x)	The existence of two compounds in the same A. Allotropy B. Anisotropy	crystalline form is k C. Isomorp		Polymorphism
	(xi)	In the reaction $N_2O_4 \rightleftharpoons 2NO_2$ $\Delta H = +57.2 \text{ kg}$	j the e quilibrium wil	l be shifted in	forward direction by:
		 A. Increasing the concentration of NO₂ C. Increasing the pressure 		ng the temper ing the volum	
	(xii)	Which salt will form acidic solution in water? A. K_2CO_3 B. KCI	C. NaBr	D.	NH₄Cl
	(xiii)	The order of enzyme catalysed reaction is: A. 3 B. 0	C. 1	D.	2
	(xiv)	The boiling point of 0.1 molal solution of gluco A. 105.2 °C B. 100.52 °C	ose in water is:		
	(xv)	18 g glucose is dissolved in 180 g water. The			101.86 °C
	` '	A. 0.001 B. 10	C. 1.8	D.	0.01
	(xvi)	The standard enthalpy of formation is zero for A. $C_6H_{12}O_6$ B. O_2		D.	NaCl
	(xvii)	One coulomb is the charge carried by: A. 9.11×10 ³¹ electrons	B. 6.25×10	electrons	

For Examiner's use only:

1.602×10¹⁹ electrons

Total Marks:

D.

Marks Obtained:

6.02×10²³ electrons

---- 1HA 1709 (L) **----

CHEMISTRY HSSC-I

(Revised Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B, C and D: 68

NOTE: The Questions of sections B, C and D are to be answered on the separately provided answer book.

Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 21)

(Chapters 1 to 6)

Q. 2 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) One mole of H_2SO_4 should completely react with two moles of NaOH. How does Avogadro's number help to explain it?
- (ii) Calculate the radius of first orbit of Hydrogen atom and Helium ion. Which one has smaller radius? Give reason.
- (iii) Describe the reason for the production of X-rays.
- (iv) Draw the molecular orbital diagram for F_2 and calculate its bond order.
- (v) State and explain Joule Thomson effect.
- (vi) a. State Graham's law.
 - b. Determine the molar mass of a gas which diffuses four times faster as compared to SO_2 gas.
- (vii) Calculate the bond energy of HBr. Bond energy of H_2 is 436 kj/mol and that of Br_2 is 193 kj/mol.
- (viii) Explain why?
 - Evaporation is a cooling process.
 - b. C_6H_{14} is a liquid whereas C_2H_6 is a gas.
- (ix) Write any three differences between molecular and metallic solids.
- (x) What is absolute zero? How will you derive it from Charles' law?

SECTION - C (Marks 21)

(Chapters 7 to 12)

Q. 3 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) Describe the effect of increase in pressure and temperature on the following reaction at equilibrium: $2SO_{2(i)} + O_{2(i)} \rightleftharpoons 2SO_{3(i)}$ $\Delta H = -198 \ kj$
- (ii) a. What is a precipitation reaction?
 - b. How will you predict the formation of precipitates when two solutions are mixed together?
- (iii) What is levelling effect? Describe giving an example.
- (iv) Write down any three applications of buffer solutions.
- (v) a. For the reaction $NO_2 + CO \longrightarrow NO + CO_2$ Rate = $K[NO_2]^2$ write down the mechanism.
 - b. What will happen if the concentration of *CO* is increased three times in the above reaction? Justify your answer.
- (vi) What is Arrhenius equation? How this equation describes the effect of increase in temperature on the rate constant and rate of a reaction?
- (vii) Concentration of H_2SO_4 is 98% w/w. Its density is 1.84 g/cm^3 . Calculate the molarity and molality of this solution.
- (viii) Define Osmotic pressure, Colloids, and Molal Freezing point Depression constant.
- (ix) What is Calorimetry? Briefly describe its types.
- (x) Describe the rusting of iron, giving the reactions taking place during the process.

SECTION - D (Marks 26)

Note:	Atter	mpt any TWO questions. All questions carry equal marks.	(13 x 2 = 26
		(Question 4 from Chapters 1 to 6)	
Q. 4	a. b.	Define hybridization. Name its types? Explain the structure of ethyne on the basis of hybridization. Derive a relationship for total energy of electron present in nth orbit of hydrogen atom.	on. (1+1+5 (6
		(Question 5 from Chapters 7 to 12)	
Q. 5	a.	Describe the quantitative aspect of elevation in boiling point.	(6
	b.	What is Born Haber cycle? Draw a labelled Born-Haber cycle for the formation of $\it NaCl$.	(2+5)
		(Question 6 Part (a) from Chapters 1 to 6 and Part (b) Chapters 7 to 12)	
Q. 6	a.	Differentiate between limiting and non-limiting reactants. Calculate the mass of NH_3 prod	luced
		when $100 \ g \ Ca(OH)_2$ is reacted with $100 \ g \ NH_4Cl$.	
		$Ca(OH)_2 + 2NH_4Cl \longrightarrow CaCl_2 + 2NH_3 + 2H_2O$	(2+4
	b.	Describe the construction and working of an ordinary dry cell and alkaline dry cell, giving t	
		reactions taking place at anode and cathode.	(7

---- 1HA 1709 (L) -----

Page 2 of 2 (Chemistry)

CHAEDIATE AND				
	Roll No.			
THE THE STATE OF T	Sig. of Cand	lidate		
SLAMABAD				

Ans	wer Sheet No	
Sin	of Invigilator	

CHEMIS	TRY	HSS	C-I
SECTION	- A (<u>Marks</u>	17)

Time	allowed	l: 25	Minutes
------	---------	-------	----------------

Q. 1

(Revised Syllabus)

Version Number 1 7 0 5

NOTE:- Section-A is compulsory. All parts of this section are to be answered on the question paper itself. It

Del	uld be completed in the first 25 eting/overwriting is not allowed. Do r	not use lead pen	cil.			
Circle	the correct option i.e. A / B / C / D. E	ach part carries	one mark.			
(i)	The number of H^+ ions produced by		ion of 9.8 g $H_3 H_3$	PO ₄ is:		
		4×10^{23} C.	1.806×10^{23}	D.	2.40×10^{23}	
(ii)	When $_{29}^{65}Cu$ is bombarded with slow r				•	
/iii\	A. α – rays B. β – The radius of 1st orbit of Li^{+2} ion is:	rays C.	γ – rays	D.	X - rays	
(iii)		45 <i>A</i> ° C.	0.529 <i>A</i> °	D.	2.116 A°	
(iv)	The molecular geometry is determine					
` ,	A. SnCl ₂ B. PbC		PCl ₃	D.	BCl_3	
(v)	The energy of σ_{2px} orbital is higher	-	•		-	:
` ,	F					•
(vi)	A. N_2 B. O_2	C.	O_2^{+2}	D.	F_2	
, VI)	The volume occupied by 14 g N_2 gas A. 1.12 dm^3 B. 2.24		$11.2dm^3$	D.	$22.4dm^3$	
(vii)	The relative rate diffusion of CH_4 and		11.2am	D.	22.4 <i>am</i>	
	A 2:1 B. 1:2	C.	1:4	D.	4:1	
(viii)	Hydrogen bonding is NOT involved in	1:				
	A High b.p. of H_2O	В.	Solubility of C	ity of CH ₃ OH in water		
	C. Cleansing action of soap	D.	Existence of (
(ix)	Which one of the following ionic comp	oound possesses	greater lattice e	nergy:		
	A. NaCl B. KCl	C.	$MgCl_2$	D.	$CaCl_2$	
(x)	The value of Kc and Kp will be the	same for the read	ction:			
	A. $N_2 + 3H_2 \rightleftharpoons 2NH_3$	B.	$2SO_2 + O_2 \rightleftharpoons 1$	$2SO_3$		
	$C. N_2 + O_2 \rightleftharpoons 2NO$	D.	$N_2O_4 \rightleftharpoons 2NO_5$	2		
(xi)	pH of $0.001 M Ca(OH)_2$ is:					
	A. 3 B. 2.7	C.	11	D.	11.3	
(xii)	The rate constant is equal to the rate	of reaction if the	order of reaction	is:		
	A. 0 B. 1	C.	2	D.	3	
(xiii)	The molarity of $100cm^3$ solution conta	ining 4 g NaOH	is:			
	A. 0.1 M B. 0.5	M C.	1.0 M	D.	1.5 M	
(xiv)	A colloid containing a liquid dispersed	t into another liqu	iid is called:			
	A. Sol B. Gel	C.	Aerosol	D.	Emulsion	
(xv)	Which one of the following enthalpy is	s always negative	?			
	A. Enthalpy of formationC. Enthalpy of atomization	B . D.	Enthalpy of so Enthalpy of co	olution ombusti	on	
(xvi)	The number of moles of Cr depos $Cr^{+3} + 3e^{-} \rightarrow Cr$ is:		1.5 F electricit	y in the	e following reaction	
(s.o11)	A. 0.5 moles B. 1.0 n		1.5 moles	D.	3 moles	
(xvii)	The number of electrons required to b	palance the follow C.		-	- '	3:
	A. 1 e B. 2 e	C.	3 e	D.	4 e	
For E	caminer's use only:					
		Total	Marks:		17	

Marks Obtained:

CHEMISTRY HSSC-I

(Revised Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B, C and D: 68

NOTE: The Questions of sections B, C and D are to be answered on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B If required. Write your answers neatly and legibly.

SECTION - B (Marks 21)

(Chapters 1 to 6)

Q. 2 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) Why the actual yield in a chemical reaction is less as compared to the theoretical yield?
- (ii) Calculate the wave number of radiation emitted when an electron shifts from 4th and 2nd orbit in hydrogen atom. Also name the series of spectral lines formed by these radiations.
- (iii) Justify that the e/m ratio of cathode rays is independent of nature of gas whereas that of positive rays depends upon it.
- (iv) Explain briefly the structure of SnCl₂ and PCl₃ on the basis of VSEPR theory.
- (v) The observed dipole moment of *HCl* is 1.03D and bond length is 127 pm. Calculate percentage ionic character in *HCl* .
- (vi) $150 \text{ } cm^3$ of H_2 gas effuses through a porous partition in 10 seconds. In how much time the same volume of O_2 gas will effuse?
- (vii) a. State Dalton's law of partial pressure.
 - b. How this law describes the process of breathing at high altitude?
- (viii) Describe vacuum distillation, giving its one application.
- (ix) Define Anisotropy, Transition Temperature, and Cleavage plane.
- (x) What are the liquid crystals? Write down their two uses in medical science.

SECTION - C (Marks 21)

(Chapters 7 to 12)

Q. 3 Answer any SEVEN parts. All parts carry equal marks.

 $(7 \times 3 = 21)$

- (i) a. Define solubility product.
 - b. Calculate the solubility of $PbSO_4$ when $Ksp = 1.96 \times 10^{-8}$ at $25^{\circ}C$.
- (ii) What is the effect of increase in temperature on equilibrium position and the value of Kc on the given reaction? $N_2O_4 \rightleftharpoons 2NO_2$ $\Delta H = +57.2$ kj / mol
- (iii) a. State Bronsted Lowry concept of acids and bases.
 - b. Prove that CH_3COOH acts as a Bronsted acid as well as a base.
- (iv) What is a zero order reaction? Give two examples.
- (v) Differentiate between homogeneous and heterogeneous catalysis, giving one example of each.
- (vi) Write down the three statements of Raoult's law.
- (vii) Write down three differences between molarity and molality.
- (viii) Balance the equation by oxidation number method. $MnO_2 + HCl \rightarrow MnCl_2 + H_2O + Cl_2$
- (ix) Find out the cell potential for Ni/Mg cell. The values of reduction potential for half reactions are:

$$Ni^{+2} + 2e \rightleftharpoons Ni$$
 $E^{o} = -0.25 V$
 $Mg^{+2} + 2e \rightleftharpoons Mg$ $E^{a} = -2.38 V$

(x) Calculate ΔH for the following reaction $S + O_2 \rightarrow SO_2$ from the following data:

$$S + \frac{3}{2}O_2 \longrightarrow SO_3 \quad \Delta H = -395.2 \text{ kj}$$

$$2SO_2 + O_2 \longrightarrow 2SO_3 \quad \Delta H = -198.2 \text{ kj}$$

SECTION - D (Marks 26)

11000.	Atte	(1	3 X 2 = 26
		(Question 4 from Chapters 1 to 6)	
Q. 4	a.	Derive Vander Waal equation for a non-ideal gas.	(07)
	b.	Differentiate between Sp^3 , Sp^2 and Sp hybridizations. Write any two differences.	(06)
		(Question 5 from Chapters 7 to 12)	
Q. 5	a.	Describe the quantitative aspects of depression in Freezing point with the help of a graph.	(06)
	b.	Explain the construction and working of lead storage battery. Write down the reactions taking	ng
		place at the electrodes during the discharging process.	(07)
		(Question 6 Part (a) from Chapters 1 to 6 and Part (b) Chapters 7 to 12)	
Q. 6	a.	Explain the origin of spectrum of hydrogen atom on the basis of Bohr's atomic model. What	: are
		the different series of spectral lines present in the infrared region of this spectrum and how	
		are formed?	(06)
	b.	Explain how the mixture of CH_3COOH and CH_3COONa acts as a buffer. Also calculate the	
		pH of a buffer containing $0.1~M~CH_3COOH$ and $1.0~M~CH_3COONa$. The value of PKa for	
		CH_3COOH is 4.76 .	(07)

----- 1HA 1709 (ON) -----

Page 2 of 2 (Chemistry)

OMEDIATE AND				
	Roll No.			
NO TO THE BOX	Sig. of Cano	didate		

Time allowed: 25 Minutes

Q. 1

Answer Sheet No	
Sig. of Invigilator	

(Old Syllabus)

CHEMISTRY HSSC-I

SECTION - A (Marks 17)

NOTE:	Section-A is compulsory. All parts of this section are to be answered on the question paper
	itself. It should be completed in the first 25 minutes and handed over to the Centre
	Superintendent, Deleting/overwriting is not allowed. Do not use lead pencil.

Circle t (i)	the correct option i.e. The spectrum of the diff	erent iso	opes in the Mas	ss-spectro	meter is done	on the bas	is of:
		•	sitive charge on	each ion			
	B. Different $\frac{e}{m}$	value					
	C. Different m/\sqrt{g}	value					
	D. Velocities of th						
(ii)	The volume occupied b	y 1.8 g of	O_2 at STP is:				
	A. $22.4 \ dm^3$	B.	$1.26 \ dm^3$	C.	$1.12 \ dm^3$	D.	$112 dm^3$
(iii)	When hot saturated soll A. Medium sized	crystals	ooled very rapid	lly we get	?		
	B. Large sized crC. Premature cryD. No crystallizat	stallizatio	on of the substa	ance			
(iv)	A graph obtained from	Boyle's la	w is:	5	طغنيين مسيم بمناط	mavimum	
	A. A straight lineC. A curve with n	ninimum		В. D.	A curve with A parabolic of		
(v)	The critical temperature		s is low as com				
,	A. Ar is monoatoC. It has low pola	mic gas irizability		B. D.	It has a sma It has four lo	ll size	
(vi)	Which one of the follow					5	\A/mh- m
٨٠;;	A. Ether NaCl is a face-centere	B.	Chloroform	C. ∝⁺ion at i	Ethanol	D. unit cell is :	Water
(vii)	A. Two unit cells		tructure. The Iva	B.	Four unit cel	ls	orial ca by.
()	C. Only one unit		antaring alastro	D.	Eight unit ce	ells	
(viii)	When 6d orbital is com A. 7f	B.	7s	C.	7p	D.	7d
(ix)	Which of the following		s has zero-dipol		t?	_	
	A. NH_3	В.	$CHCl_3$	C.	H_2O	D.	BF_3
(x)	Calorie is equivalent to A. 0.418 J	: B.	41.84 J	C.	4.184 J	D.	418.4 J
(xi)	The unit of equilibrium					_	
` '	A. $dm^{+6}mole^{-2}$					D.	Having no units
(xii)	If more solvent is adde	d to solut	ion, the value of	f heat of s	olution:		- -
	A. Increases						
	B. DecreasesC. Is not affected	4					
			he solution is in	nfinitely d	iluted		
(xiii)	If a strip of Cu metal is	•	a solution of F	•			
	A. Cu will be dep			В.	Fe is precipi		20
(xiv)	C. Cu and Fe bo The unit of rate consta			D. the rate of	No reaction reaction in:	takes plat	Je
(7)	A. First order rea			B.	Second orde		1
(>e 1)	C. Third order re		agation the name	D.	Zero order r		3.
(xv)	After 3-half-lives of a cl	nemicai r B.	eaction the perd 75	entage ira C.	12.5	D.	5. 50
(xvi)	Number of sigma bond			•			
	A. One The lodine present in v	В.	Two	C.	Three	D.	Four
(xvii)							

Total Marks:

Marks Obtained:

CHEMISTRY HSSC-I

(Old Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

Sections B and C comprise pages 1-2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Periodic table will be provided on demand.

SECTION - B (Marks 42)

- Answer any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14 x 3 = 42) Q. 2
 - What are the number of covalent bonds in 8g of CH₄? (i)
 - What is the distribution co-efficient K? To which technique is it applicable? (ii)
 - Justify that the volume of the given mass of a gas becomes theoretically zero at $-273^{\circ}C$. (iii)
 - Propanone (CH_3COCH_3) , Propanol $(CH_3CH_2CH_2OH)$ and butane $(CH_3CH_2CH_2CH_3)$ have very similar (iv) relative molar masses. List them in order of increasing boiling points. Explain your answer.
 - What is the $H\alpha$ line in hydrogen spectrum? (v)
 - How do you justify that the distances between adjacent orbitals of H atoms go on increasing from lower (vi) to higher orbits?
 - Define Zeeman effect and stark effect. (vii)
 - Calculate the number of electrons in s, p, d, f subshells with the help of formula. (viii)
 - Calculate the value of principal quantum number if an electron in hydrogen atom revolves in an orbit of (ix) energy $-0.242 \times 10^{-18} J$.
 - How can the percentage of ionic character of the polar bond be determined? (x)
 - When do different types of chemical equilibrium constant for a reaction become equal? (xi)
 - Define Raoult's law in three different ways. (xii)
 - The solubility product of Ag_2CrO_4 is 2.6×10^{-2} at $25\,^{\circ}\mathrm{C}$. Calculate the solubility of the compound. (xiii)
 - 4.675 g of a compound with empirical formula C_3H_3O were dissolved in 212.5 g of pure benzene. The (xiv) freezing point of solution was found $1.02\,^{\circ}\mathrm{C}$ less than that of pure benzene. The molal freezing point constant of benzene is 5.1°C. Calculate the relative molar mass.
 - Write down the reactions in Alkaline battery. What is its voltage? (xv)
 - How is the Voltaic cell represented? (ivx)
 - When does the reaction become Zero-order? (xvii)
 - $IO_3^{1-} + AsO_3^{3-} \longrightarrow AsO_4^{3-} + I^-$ Balance the given equation by acidic medium (xviii)
 - Differentiate between the internal energy change and enthalpy change. (xix)

State the biological applications of liquid crystal.

C.

SECTION - C (Marks 26)

Note:		Attempt any TWO questions. All questions carry equal marks. (2 x 2	13 = 26)
Q. 3	a.	Calculate the number of grams of Al_2S_3 which can be prepared by the reaction of 20 g of Al and	
		30 g of sulphur. How much non-limiting reactant is in excess? Atomic masses: $Al = 27$ $S = 32$	04
	b.	Why is experimental yield mostly less than the theoretical yield?	03
	c.	THE STATE OF THE S	
	0.	to this theory.	2+2+2
Q. 4	a.	How can the lattice energy of the ionic compound be measured by Born-Haber cycle?	06
	b.	What is Le-Chatelier's principle? Write down the effect of catalyst on equilibrium constant.	1+3
	C.	Explain how is the pressure of dry gas equal to the difference of total pressure and aqueous tension of water?	03
Q. 5	a.	Define and explain the Arrhenius equation. How does Arrhenius equation help us to calculate the	
		energy of activation of a reaction?	2+4
	b.	What are the advantages of vacuum distillation?	04
	C	State the higherical applications of liquid crystal.	03